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SUMMARY

Large eddy simulations of two basic con�gurations (decay of isotropic turbulence, and the academic
plane channel �ow) with heat transfer have been performed comparing several convection numerical
schemes, in order to discuss their ability to evaluate temperature �uctuations properly. Results are
compared with the available incompressible heat transfer direct numerical simulation data. It is shown
that the use of regularizing schemes (such as high order upwind type schemes) for the temperature
transport equation in combination with centered schemes for momentum transport equation gives better
results than the use of centred schemes for both equations. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the major concerns of the thermo-hydraulic department (DTP) at the French Atomic
Agency (CEA) is to study thermo-hydraulic phenomena that take place in nuclear plants, at
nominal conditions as well as in possible critical conditions, in a huge part for safety studies.
The �uid �ows of interest are essentially turbulent �ows with high heat transfers. Among

many, one of the possible tools to handle these problems relies on the development of speci�c
methods for the simulation of unsteady turbulent �ows such as the large eddy simulation
(LES).
Comprehension and good forecast of what will be the characteristics of the heat transfers

and temperature �uctuations is a major problem, specially if we focus on problems such
as thermal fatigue. In fact, not only computations must provide good results for the mean
temperature �elds, but they also have to give accurate results (in frequency and amplitude)
for the �uctuating temperatures: an under-estimation of the temperature �uctuations at the
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wall could lead to a rapid destruction of the wall material by thermal fatigue, thus generating
bursts (leaks) and security problems.
A lot of work has been devoted to select ‘good numerical methods for LES’. Although some

work rely on the use of slightly di�usive methods, such as the ones involved in the so-called
MILES (monotonically integrated LES) concept [1, 2], the general shared recommendations
within the academic LES community are the following:

(i) use of non-di�usive schemes such as spectral methods or high order centred schemes for
convection (see References [3–6]).

(ii) even if a particular phenomenon (such as contact discontinuity or shock occurrences)
appears and requires speci�c numerical treatments (hybrid upwind and central schemes,
see Reference [6]), the areas dominated by turbulence should basically be treated through
centred schemes, or at least with ‘as low numerical di�usion as possible’.

This choice clearly comes from good conservation properties associated to the centred
schemes (kinetic energy for the momentum equation, temperature variance for the transport
equation): conservation at a discrete level being ensured for some particular (skew-symmetric)
formulations [3]. In addition when focusing on the momentum transport equations, Garnier
et al. [5], showed that the use of regularizing schemes can completely hide the e�ect of the
sub-grid-scale model. However centred convection schemes used to discretize the temperature
equation in LES are known to generate possible numerical instabilities. No discussion is made
about the sub-grid scale turbulence modelling (that could keep the temperature �eld between
physical bounds) in the frame of this work since it is not the purpose of a SGS model to have
this property but yes to represent the sub-grid scale e�ect on the resolved scales. Therefore a
solution must be found on a numerical point of view.
These instabilities are responsible for non-physical over-estimated �uctuations of tempera-

ture for example, which is not in accordance with precise thermal fatigue predictions.
On the contrary, the use of stabilizing convection schemes tends to damp temperature �uc-

tuations, which is not compatible with security prediction and against the idea of ‘maximizing
the constraints’.
Previous works involving direct numerical simulations rely on the use of a combination of

centred scheme for the advection term in the momentum equation and regularizing (say Quick)
scheme for the advection of temperature (see References [7, 8]). It is therefore tempting to
use the same combination for LES (see also Reference [9]).
Considering the basic test case of forced convection in a channel �ow con�guration, the

purposes of this paper consist of two points:

(i) illustrate the fact that the centred–centred combination for both momentum and temper-
ature equations does not always give accurate results (it can lead to over-prediction of
temperature �uctuations). This point is comforted by the work of Montreuil et al. [10]
from which it seems possible to extrapolate that discrepancies between results and ref-
erenced solutions may be due to the numerical schemes and not to the SGS modelling.
Also, a brief investigation shows that quality of the results are not improved when using
an implicit time integration. This gives an idea for the behaviour of wall bounded �ows.
We will show that it is even worse for other types of �ows, such as free shear �ows
(Tee junction).
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(ii) investigate the behaviour of the combination ‘centred scheme for momentum-regularizing
scheme for temperature’ and show some of its advantages and limits for LES of wall
bounded �ows.

This work makes part of a preliminary re�ection before dealing with more complex
geometries such as a 3D jet in a cross-�ow at di�erent temperatures with �uid–solid in-
teraction. This preliminary work relies on the treatment of wall resolved �ows (i.e. no wall
functions are used).

2. LITERATURE SURVEY

Majority of available numerical results concerning fundamental and theoretical studies of
unsteady heat transfer are done either by direct numerical simulation (DNS) or LES. DNS of
such con�gurations are most of the time realized using kinetic energy conservative schemes
[11–16].
Other authors [7, 8] have noticed some spurious behaviour of centred schemes for scalar

transport and recommend the use of regularizing schemes for temperature transport for DNS,
justifying their choice by former DNS based on high order (�fth order) upwind biased schemes
[4]. But only few results are given for LES focusing on the heat transfer in the simple case
of iso-thermal walls (see References [10, 17]).
In the case of Reference [10], LES computations were carried out for iso-�ux boundary con-

ditions and using a semi-implicit time integration technique. Advective terms are discretized
using a second order centred scheme. The author made a parametric study with numerous
sub-grid scale models for the SGS heat �ux (Fickian as well as non-Fickian models) and
observed an over-prediction of the resolved temperature �uctuations Trms regardless of the
SGS model, but obtained good mean pro�les. The over-prediction of the peak value of the
temperature �uctuations is between 30 and 40% for the simulations equivalent to our space
discretization. Wang et al. [17] used a fully implicit time integration, as well as a third-order
upwind scheme for advective terms but available literature results are limited to mean pro�les
for temperature.
Some authors have been investigating heated channel �ows under buoyancy e�ects [18, 19].

Peng and Davidson [19] have studied a vertical channel �ow with buoyancy e�ects using a
second-order centred convection scheme and an implicit time integration. They found a good
agreement between there Trms �elds and the available DNS data. Lee and Pletcher [18] made
LES computations of a horizontal channel �ow submitted to an unstably strati�ed temperature
�eld, using the same numerical procedure as Reference [17].
These previous works dealing with passive scalar transport have not focused on the e�ect

of the convection scheme in the case of LES, at least concerning the ability of predicting
scalar �uctuations for wall bounded �ows.

3. MODELLING FRAMEWORK

In the frame of the incompressible Navier–Stokes equation, temperature is considered in the
present study as a passive scalar.
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The modelling technique used here to compute these turbulent �ows is the large eddy
simulation. The continuous equations and continuous calculated �elds are discretized in or-
der to solve the governing equations. The discretizing process leads to a scale separation
between the large (resolved) scales and the small (unresolved) scales of the �uid �ow. It
can thus be interpreted as a �ltering operation. Following Reference [20], this can be seen
as the combination of a spatial �lter to the governing equations in order to retrieve and
calculate explicitly the large scales of the �uid motion in our computation, while the ac-
tion of the small scales (smaller than the �lter width, usually the grid size) is modelled
by a SGS model. This basic underlying justi�cation is that large scales of the motion are
the ones which are responsible for most of the dynamics of the �uid �ow and are long-
living, whilst small scales of turbulence are more generic, and account for the largest part
of the turbulent energy dissipation (see the standard literature on the topic such as Reference
[21]).

3.1. Governing equations and physical modelling

As the present work mainly relies on numerical aspects, the governing equations and the
physical modelling are only brie�y described: they indeed rely on standard approaches [22, 23].

3.1.1. Governing equations and related physical constraints. For an incompressible �ow, the
�ltered Navier–Stokes equation, as well as the temperature equation, read as follows (if we
admit that the �lter has the permutation property with both time and spatial derivatives),
where the (̃ ) stands for a standard �ltering operator:

@ũi
@t
+
@ũjũi
@xj

= − 1
�
@p̃
@xi

+
@
@xj
(2�S̃ij + �ij) (1)
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@T̃
@xi

+�i

)
(2)

Here �ij is the sub-grid-scale (SGS) stress tensor and �i is the SGS turbulent heat �ux.
These SGS terms account for the energy transfer from the large scales to the small scales
of turbulence [21]. Most part of the actual models are based on a Boussinesq hypothesis,
which relates the SGS tensor to the strain-rate tensor by means of a turbulent eddy viscosity,
following relation (3):

�ij= ũiũj − ũiuj=2�tS̃ ij + 13�ij�kk ; S̃ ij=
1
2

(
@ũi
@xj

+
@ũj
@xi

)
(3)

As for the SGS heat �ux, �i, a Fickian approach of the problem is commonly assumed,
thus relating the SGS heat �ux to the resolved temperature gradient by means of a turbulent
di�usivity as seen in equation (4):

�i= ũiT̃ − ũiT =�t @T̃@xi (4)
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A point that can raise an issue is the implicit assumption that the LES �lter keeps the
same numerical bounds for the �ltered equation than for the non-�ltered equation. This could
become the subject of a whole research topic but is not the purpose of this work.
Indeed, given a set of initial and boundary conditions, let us consider that the physical

transport of a quantity � respects the following physics:

∀t;∀x : �16�(x; t)6�2

What enables one to write that the �ltered equation:

@�̃
@t
+
@ũi�̃
@xi

=
@
@xi

(
(�+ �t)

@�̃
@xi

)

(from which all the terms resulting from any non-commutation between the �lter operator (̃ )
and the spatial derivatives have been omitted) respects the following statement (i.e. it follows
the same physical evolution):

∀t;∀x : �16�̃(x; t)6�2

is that the resulting �lter should be regularizing and monotonic.
By resulting �lter, one has to read it as the sum of the combined e�ects on the solution of

the mesh discretization (cut-o� at 2�̃, �̃ being a measure of the grid spacing), of the eddy
viscosity and of the numerical schemes involved in the equation resolution.
Therefore, two approaches can be seen to strengthen the above statement. In the �rst one,

it can be assumed that the di�usive e�ects, the realizability of the sub-grid scale model in
conjunction with a well chosen �lter operator, will keep the �ltered quantity evolution bounded
by the physical boundaries. In the second one, the respect of the physical boundary evolution
is imposed for the �ltered quantity evolution, which should be respected given a proper set
of numerical schemes. The latter will be retained for the present paper.

3.1.2. SGS stress modelling. The candidate retained for our eddy viscosity model is the
WALE (wall-adapting local eddy-viscosity) model from Nicoud and Ducros [24].
The main idea of this model is to recover the proper behaviour of the eddy viscosity near

the wall (o(y3)) in case of wall-bounded �ows, while preserving interesting properties such as
the capacity to provide no eddy-viscosity in case of vanishing turbulence (property required
for the transition from laminar to turbulent states). Major interest of this model �rst rely on
the fact that it needs no information on the direction and distance from the wall (avoiding the
use of any damping function) thus being really suitable in unstructured grids where evaluating
a distance to the wall is precarious.

3.1.3. SGS heat �ux modelling. The SGS heat �ux term is modelled using the assumption
of a SGS Prandtl number, Prt , which is the simplest and usual way to model this term:

�t =
�t
Prt

(5)
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One must keep in mind that the turbulent Prandtl number is commonly associated to a
statistical approach of turbulence (ensemble or time averaging), whereas the SGS Prandtl
number refers to a �ltered approach of the turbulent �eld and depends of both time and
space, as a combination of Equations (3)–(5).
Therefore, there is no obvious reason why these two de�nitions would lead to the same

values since they do not de�ne the same variable.
However, the assumption that the two (di�erent) �ltering formulations give approximately

the same value for the turbulent and sub-grid scale Prandtl number relies on previous LES
works and related literature [10, 17].
Montreuil et al. [10] show for example that the evolution of the sub-grid scale Prandtl

number across the channel is not constant but remains between 0.6 (in the middle of the
channel) and 1.2 (maximum value at about y+ � 20). Moreover, Wang et al. in their LES
work [17] of turbulent plane channel �ow, show the evolution of the modelled sub-grid scale
turbulent Prandtl number which varies between 1 (at the wall) and 0.5 (in the middle of the
channel).
Here Prt is assumed constant and equal to 0.9. This value is motivated by the DNS work of

authors like Lyons et al. [12], Nicoud [16] and Kim et al. [11] who found an evolution of Prt
approximately constant and equal to 0.9. The work of Kasagi et al. reported in Reference [14]
indicates a value of Prt almost equal to 1. These SGS models were used for all computations
of this paper to derive only the in�uence of the advection scheme. More sophisticated models
can be used (see References [10, 17]), but this point is not the key issue of the present study.

3.2. Numerical methods

All computations discussed in this paper were done using the TRIO U/PRICELES code de-
veloped at CEA Grenoble [25]. This code is mainly intended to deal with LES in thermo-
hydraulics, using structured or unstructured grids under the incompressible or low-Mach num-
ber approximations.
In this paper, calculations were done using structured grids. Unknowns (pressure, velocity

and temperature) are located on a staggered grid [35].
The discrete form of the incompressible Navier–Stokes equation is solved in matrix form by

a projection method. The Poisson equation for the pressure is solved by a conjugate gradient
method with a SSOR preconditionning to ensure a zero divergence �eld (usual convergence
limit is 10−8). Once it is determined, it is replaced in the momentum equation, so that velocity
is calculated and can be used in the temperature equation. A second order centred advection
scheme was used for the momentum equation.
Di�erent convection schemes were compared for the temperature advection term (in its

conservative form) in the heat equation: Centred fourth order (denoted by C4), Upwind �rst
order (U1) and Quick third order with FRAM limiter (Q3) (See Appendix A for details).
Results concerning the use of the second order Centred scheme for temperature transport are
not presented in this work, but has been shown to give the same behaviour and results as the
C4 scheme: the e�ects interested herein are due to the centred nature of the schemes and not
to their order.
Time advancement is done using a third order Runge–Kutta explicit time integration scheme

(denoted by RK3) (see Reference [26]) except for one simulation where we have made use
of a Cranck–Nicolson scheme (denoted by CN).
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4. RESULTS

The present re�ection will rely on simulations performed on three con�gurations:

(i) a 2D Tee junction that illustrates the problem of handling contact discontinuity within a
turbulent-like context. As already recalled in some study [8], this will show that centred
type schemes lead to spurious oscillations of the temperature �eld, whereas regularizing
schemes show acceptable physical results;

(ii) a freely decaying isotropic turbulence that will test the di�erent schemes against their
capabilities of handling fully turbulent �ows;

(iii) the periodic channel �ow to cope with the wall bounded �ow type problems.

4.1. 2D TEE junction

Following previous study reported in Reference [9], centred scheme may lead to numerical
instability for scalar equation with in�ow/out�ow conditions. This is illustrated here by the
present con�guration that concerns a simple two dimensional unsteady �ow with di�erent
temperatures developing in a Tee junction (see Figure 1). The objective is not to reach
physical results as turbulent mixing is concerned since the con�guration is 2D. Attention
was only payed to the temperature �eld (especially on its bounds), bearing in mind that the
simulation results at the early stages of the phenomenon do not rely only on SGS modelling
but also on the numerical treatment of the contact discontinuity.
In particular, the large structures observed downstream are due to the 2D simulation and

should disappear when turning to 3D.
The initial condition is a uniform temperature �eld at T2 = 550 K and downward parabolic

velocity �eld in the upper part and a uniform temperature of T1 = 500 K and a parabolic
velocity �eld in the lower part of the domain. Reynolds number is equal to 1546.
Boundary conditions are adiabatic and no-slip condition on the walls. Outlet boundary

condition is an imposed uniform 0 pressure. The inlet boundary conditions are (for simplicity)
two parabolic velocity pro�les of same maximum velocity and di�erent uniform temperatures
(500 and 550 K). Two meshes of 313× 40 (for the lower �ow) and 40× 80 (for the upper

Figure 1. Con�guration of the unsteady 2D Tee junction. The dashed line stands for a possible
representation of the instantaneous location of temperature gradients.
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Figure 2. Instantaneous temperature �elds in a 2D unsteady Tee junction at t=12:2 s (8 recirculation
times)—non-physical temperature regions (i.e. out of limits) are denoted by dark contours. Centred

4th order; Tmax = 554:9 K − Tmin = 494 K.

Figure 3. Instantaneous temperature �elds in a 2D unsteady Tee junction at t=12:2 s (8 recirculation
times)—non-physical temperature regions (i.e. out of limits) are denoted by dark contours. Quick;

Tmax = 550 K − Tmin = 500 K.

incoming �ow) elements constitute the complete grid domain. No sub-grid scale model was
used in this section.
First requirement of such a simulation is that temperature �eld should stay bounded by

physical imposed temperatures. The critical zones (i.e. the zone where most of the points
reach temperatures beyond physical limits, see Figure 2) are of course located where mixing
is the highest. Moreover, the di�usive behaviour of the di�erent convection schemes is clearly
seen in this situation. Indeed, the U1 scheme shows a temperature �eld and a contact line
between the hot and cold �uid which is much more blurred than the Q3 or C4 scheme
(Figures 3 and 4).
Figure 5 shows the time evolution of the highest temperature observed in the domain at

each time step. As seen in this �gure, we see the important stabilizing e�ect of the temperature
convection scheme: using the Q3 or the U1 scheme keeps the temperature �eld within physical
boundaries, whereas the C4 scheme creates oscillations beyond the two inlet temperatures.
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Figure 4. Instantaneous temperature �elds in a 2D unsteady Tee junction at t=12:2 s (8 recirculation
times)—non-physical temperature regions (i.e. out of limits) are denoted by dark contours. Upwind;

Tmax = 550 K − Tmin = 500 K.
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Figure 5. 2D Tee junction: temporal record of maximum temperature in the physical domain.

4.2. Freely decaying isotropic turbulence with passive scalar transport

The case of isotropic turbulence decay with passive scalar transport is of particular interest to
test the numerical di�usion of numerical convection schemes since there are a lot of available
results throughout the literature concerning, for example, enstrophy or energy decay [23].
Expected temperature behaviour in these simulations is to stay bounded by the initial tem-

perature extrema, while the �uid temperature is homogenized by both the �uid motion and the
molecular di�usion and tends to a steady state where the �uid is at the mean homogeneous
temperature.
These simulations were performed in the case of in�nite Reynolds number in which the

dissipation is to be attributed to the action of the SGS modelling (see Table I).
The domain is a cube of dimensions (2	)3, periodic in every direction and discretized with

(32)3 elements on a regular mesh.
The initial condition, for both temperature and velocity, is a three-dimensional random

isotropic �eld whose kinetic energy peaks at a wavenumber of ki(0)=4. The temperature
�eld is chosen so that the mean homogeneous temperature is 〈T 〉=100K (〈 〉 operator stands
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Table I. Parameters for the freely decaying isotropic turbulence with passive scalar transport.

Case Mesh grid U � U U � T Time int.

1 (32)3 C2 C4 RK3
2 (32)3 C2 Q3 RK3
3 (32)3 C2 U1 RK3

0.001 0.01 0.1 1 10
t/t

ref

0.0001

0.001

0.01

0.1

1

<
 T

′2  >

Q3
C4
U1
t
-1.87

Figure 6. Time evolution of temperature variance. The −1:87 slope reference is taken in Reference [27].

for the classical spatial average) and to have an initial mean temperature variance equal to
1 (T (x; t=0)= 〈T 〉((� − 〈�〉)=100: + 1:); where � is the local kinetic energy). As a conse-
quence, the temperature �eld is as smooth as the velocity �eld at t=0. The initial maxi-
mum (resp. minimum) to mean temperature ratio in the domain is T0 max=〈T 〉=1:0443 (resp.
T0 min=〈T 〉=0:9577).
A characteristic time scale, which is the large-eddy turnover time, is de�ned as: tref =

L=
√
Ec(0) where L is a characteristic length of the eddies containing most of the initial

energy.
Three simulations were done using di�erent convection schemes, but on same grid and with

same time integration (RK3) and momentum convection scheme (C2).
The Figure 6 represents the time evolution of temperature variance, and Figure 7 shows

the decay of temperature enstrophy DT (t)= 1
2 〈(BT )2〉 (see Reference [23] for an extensive

reference).
The decay law in t−1:87 of the temperature variance, shown for example in the work of

M�etais and Lesieur [27], is recovered reasonably well.
The dissipative e�ects of the upwind type schemes (U1, Q3) in the evolution of the

temperature enstrophy can be easily seen, since these schemes do not reproduce the initial
increase and its maximum value as can also be observed in the velocity enstrophy D with
energy conservative schemes.
Considering only results on the temperature variance and on the enstrophy, the best results

are achieved with the C4 scheme compared to the other upwind type schemes, since the
Q3 scheme tends to damp the enstrophy and variance evolution of temperature during the
simulation.
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Figure 7. Time evolution of temperature enstrophy.
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Figure 8. Time evolution of the extrema of the values of temperature
in the decaying isotropic turbulence.

The evolution of the extrema values of the temperature �eld is given in Figure 8 and illus-
trates the fact that initial values are not ‘physically bounded’ for the C4 scheme simulation.
However, U1 and Q3 schemes homogenize the temperature �eld faster than the C4 scheme.
The Figure 9 con�rms this tendency. Classical in�uence of the stabilizing schemes com-

pared to the kinetic energy conservative scheme can be observed in the representation of the
temperature �eld PDF (Figure 9) where the �rst schemes tend to gaussianize the PDF. This
e�ect is known to take place in the small scales [27]. In Figure 9, vertical continuous lines
represent the initial maximum and minimum temperatures. These boundaries should �x phys-
ical bounds for the temperature �eld since the scalar will tend to homogenize and should not
create temperature values beyond these bounds. However, it is seen that for the C4 conser-
vative scheme, temperature values are out of the initial physical bounds due to the numerical
instabilities created during the �rst moments of turbulence decay.
The damping e�ect of the di�erent convection schemes is illustrated in Figures 10–12 which

show the temperature �eld at the same time t=tref = 0:75. These three pictures of the �ow show
that the temperature �eld exhibits less and less small structures as the scheme is more and
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0.94 0.96 0.98 1 1.02 1.04 1.06
T / <T>

0.001

0.01

0.1

1

10

100

PD
F

Q3
C4
U1

T
0 

m
in

 / 
<

T
>

T
0 

m
ax

 / 
<

T
>

Figure 9. PDF of the scalar �eld in an isotropic turbulence at t=tref = 0:27. The vertical lines stand for
the physical (initial maximum and minimum values) bounds.

Figure 10. Isotropic turbulence—visualization of the damping e�ect of the advection scheme: isosurfaces
of temperature are shown at same time t=tref = 0:75—Black: T=〈T 〉=1:002—White: T=〈T 〉=0:998. (Tmax

and Tmin values can be taken from Figure 8) Fourth order centred.

more di�usive. However, it should be noticed that the use of the Q3 scheme is compatible
with the occurrence of small turbulent structures (typically resolved within 5 grid points which
is reasonable in the LES framework). These damping e�ects were also observed in the work
of Garnier et al. (see Reference [5]).
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Figure 11. Isotropic turbulence—visualization of the damping e�ect of the advection scheme: isosurfaces
of temperature are shown at same time t=tref = 0:75—Black: T=〈T 〉=1:002—White: T=〈T 〉=0:998. (Tmax

and Tmin values can be taken from Figure 8) Third order quick FRAM.

Considering all criteria (time evolution of variance, enstrophy and of the extrema of tem-
perature), a compromise is to be found between a numerical method (centred) which repro-
duces correctly intermittency phenomena but may exhibit non-physical behaviours, and other
methods (regularizing) which respects physical boundaries but may show limited qualities to
reproduce all type of turbulent events such as intermittency phenomena.
Given this re�ection, we shall now investigate these two methods for the channel �ow

con�guration.

4.3. Plane channel �ow

4.3.1. Explicit time integration simulations. Most of our interest was focused on the plane
channel con�guration with di�erent imposed iso-thermal wall temperatures since it is a well
documented test case, as already seen in the literature survey.
The computational domain is the academic periodic channel �ow. Boundary conditions in

the x (streamwise), y (wall normal) and z (spanwise) directions are respectively periodic, no-
slip, and periodic boundary conditions (Figure 13). Both walls are set at di�erent but constant
temperatures T1 and T2¿T1 (with a ratio of 1:01 but, since the incompressible Navier–Stokes
equations are solved, with uniform and constant density and since there is no buoyancy force,
the temperature ratio is irrelevant in this study and any value could have been used).
Domain dimensions in wall units are Lx+ =2262; Ly+ =360; Lz+ =565. The number of grid

points is 64× 55× 40, thus resulting in a well resolved LES for the LES Mesh 1 case. In
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Figure 12. Isotropic turbulence—visualization of the damping e�ect of the advection scheme: isosur-
faces of temperature are shown at same time t=tref = 0:75—Black: T=〈T 〉=1:002—White: T=〈T 〉=0:998.

(Tmax and Tmin values can be taken from Figure 8) First order upwind.

2.h

 .hπ

z

x

y

 4π .h

T2> T 1

T1

Figure 13. Thermal channel �ow con�guration.

the LES Mesh 2 case, the number of grid points is 64× 55× 65. Grid spacings and mesh
characteristics are given in Table II. The Prandtl number of the �uid is 0:71. The bulk Reynolds
number Reb =Ubh=� is 2762. Dean’s correlation [28] would predict, in the present case, a
turbulent Reynolds number of 180. h is the channel half-height and Ub is the bulk velocity
given by Ub = 1

2h

∫ 2h
0 U dy.

Since temperature is a passive scalar, the velocity �eld is the same for every simulation
done at the same Re�, whatever the scalar �eld may look like. Velocity �eld is initialized
with a parabolic Poiseuille �ow with a white noise perturbation on all three components, and
initial temperature �eld corresponds to a linear laminar pro�le.
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Table II. DNS parameters for the channel �ow con�guration given by other authors together
with present LES mesh parameters.

�x+ �y+w �y+c �z+ Reb Re� Nu

Kasagi et al. [31] 18.4 0.08 4.9 7.36 2290 150 13.4
Kim et al. [30] 12 0.05 4.4 7 2800 180 —
Debusschere et al. [32] 9.7 1.9 1.9 5.9 3000 186 24.3
Nicoud [15] 20 0.3 9 6 2855 180 NA
LES Mesh 1 36 1 11 14.5
LES Mesh 2 36 1 11 8.8

�y+w stands for the �rst grid point at the wall; �y
+
c stands for the centreline grid-spacing. NA means data

is not available for this simulation.

Table III. LES parameters and global results for the channel �ow con�guration
(mesh parameters are given in Table II).

Case Mesh U � T Model Time integration Re�=Re� target Nu

C4− F 2 C4 yes RK3 180=180 23:3
C4 1 C4 yes RK3 177=180 21:7
Q3 1 Q3 yes RK3 177=180 22:2
U1 1 U1 yes RK3 177=180 20:9
C4− Imp 1 C4 yes CN 176=180 22
C4− noMod 1 C4 no RK3 177=180 21:7
Q3− noMod 1 Q3 no RK3 177=180 22:1

Imp refers to the implicit time integration method of Cranck–Nicolson (denoted by CN). F stands for re�ned
mesh. noMod means that no SGS model was used for the temperature equation.

The forcing term in the momentum equation used to keep a constant �ow rate is the one
proposed by Rollet–Miet [29] and reads as

fv(tn+1)=fv(tn) +
2(Q0 −Q(tn))− (Q0 −Q(tn−1))

�tS
(6)

where fv(tn) is the forcing term at time step n, Q0 is the initial �ow rate, Q(tn) is the �ow
rate at time step n, �t is the time step and S is the section of the plane channel in the main
�ow direction.
No source term is used in the scalar equation since two di�erent temperatures are imposed

on both walls.
All comparison parameters between simulations are given in Table III.
Mean pro�les and rms �uctuations will be given in dimensionless form using the following

de�nitions of the friction velocity and temperature:

u2� = �
(
@u
@y

)
w

and T�=

(@T=@y)w
�Cpu�

First and second order moment quantities are averaged in the x and z homogeneous direc-
tions, and in time for a period of 45–50 transit times to ensure statistically converged pro�les.
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Figure 14. Distribution of mean streamwise resolved velocity in wall co-ordinates.
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Figure 15. Distribution of resolved velocity �uctuations in wall co-ordinates.

A transit time is de�ned as the physical time for the �uid at the bulk velocity to make a
complete pass through the channel length.
Results for the velocity �eld are given in Figures 14 and 15 and are compared to the DNS

data from Kim and Moin [30] whose incompressible calculations are done for a bulk Reynolds
number of 2800 and a target turbulent Reynolds number of 180.
Good agreement is reached for our LES results: the usual behaviour is observed, that is

to say a small over-prediction (8%) of the streamwise velocity �uctuations u+rms and a slight
under-estimation of the two other components: v+rms and w

+
rms. Peak locations are also well

predicted.
Mean velocity pro�le is found to be in good agreement with DNS data and classical linear

and logarithmic behaviour. Calculation with a re�ned grid (Case C4 − F) has been done
to check the consistency of the results. The expected behaviour is that by re�ning in the
spanwise direction, �uctuations in the z direction will be more precisely appreciated and a
better distribution in the �uctuating �eld will be reached, hence diminishing the �uctuations
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Figure 16. Time evolution of computational domain maximum temperature in a turbulent channel �ow
(upper physical bound is 505 K).

in the streamwise direction and increasing the v+rms component. Such re�ection is found to be
in agreement with the obtained results.
Figure 16 shows the evolution in time of the maximum value of the temperature in the

computational domain (minimum value would show a similar behaviour). Non-physical tem-
peratures are also observed in this con�guration with the C4 scheme (Case C4−F) but with
smaller frequency. On the other hand, we see that the Q3 scheme (Case Q3) has a better
behaviour and that maximum �uctuations have a smaller level than the C4 scheme.
However the amplitude of variation of the maximum of temperature is of same order for

the C4 and Q3 simulations when physical bounds are respected (for example between the
110 and 115 transit times in Figure 16).
This test is less severe than the previous ones (Sections 4.1 and 4.2) since there is little

chance to have temperature contact discontinuities such as in a cross-�ow jet. However, the
same behaviour is observed for the extrema temperature as in the other con�gurations, but
with less non-physical events.
Pro�les for mean and �uctuating temperature are given in Figures 17 and 18. Results are

compared to DNS data from Kasagi et al. [15] (Re�=150, Pr=0:71), Debusschere et al. [33]
(Re�=186, Pr=0:7) and Nicoud [15] (Re�=180, Pr=0:76) who made the same simulation
with constant but di�erent temperatures at the walls.
Mean dimensionless temperature pro�le given in Figure 17 is seen to recover the proper

behaviour near the vicinity of the wall in T+ → Pry+ and in the logarithmic zone.
No real di�erence was observed on the mean pro�le of temperature when changing con-

vection scheme.
However, non negligible e�ects are seen on the temperature �uctuations (Figure 18): the

C4 scheme overestimates the maximum �uctuations level (by 30%) in the same way as it
was observed in the work done by Montreuil et al. [10]. The author showed that the over-
prediction of the peak maximum value reaches about 10–25%, depending on the type of SGS
heat �ux model used and on the resolution. The work of Montreuil et al. was compared to the
DNS data of Kim and Moin [11] of a channel �ow where temperature is produced uniformly
in the �ow and removed at the walls kept at constant and equal temperatures.
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Figure 17. Distribution of mean resolved temperature in wall coordinates (For Debusschere and Kasagi
data, only 1 point out of 3 and 1 point out of 2, respectively are represented).
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Figure 18. Distribution of resolved temperature �uctuations in wall co-ordinates.

Comparing results of the C4 scheme with the standard mesh (Case C4) and the ones
obtained with the re�ned grid (Case C4 − F) shows consistency with the chosen numerical
method. As can be seen in Figures 17 and 18, results are only slightly improved when re�ning
in the z direction. Moreover, the reduction of the rms �uctuations is negligible compared to
the initial over-prediction.
The ‘good’ result obtained for T+rms with the Q3 scheme should also be analyzed looking

at the basic Trms=�T quantity (see Figure 19).
The result provided by the Q3 scheme leads to a slight under-prediction of Trms=�T ,

whereas C4 scheme leads to a clear over-prediction. However, it must be noticed that the
near-wall behaviour reaches a better result with the C4 scheme than with the Q3 scheme, even
if afterwards �uctuations are monotonous and do not show a proper temperature �uctuation
pro�le.
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Figure 19. Distribution of temperature pro�les undimensionalized by the
temperature di�erence on the walls.
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Figure 20. Resolved streamwise heat �ux pro�le in the turbulent channel �ow.

This can lead to a speci�c analysis and proposition for numerical scheme (see Section 5).
Comparing the results obtained for the Nusselt number (see Table III), de�ned as (see

Reference [17]):

Nu=
4h

Tb − Tw
@T
@y w

where Tb is the bulk temperature and Tw is the temperature at the wall, there is good agreement
with the available correlation of Kays and Crawford [33] (Nu=0:04Re0:8b Pr

0:3) at Reb = 2762
and the DNS data of Debusschere et al. which correspond, respectively, to NuK&C ≈ 20:4 and
Nu=24:3.
All simulations lead to approximately the same value of Nu showing a small dependence

of the convection scheme on the overall heat transfer.
Streamwise and normal heat �ux pro�les are given in Figures 20 and 21, respectively. Good

agreement is achieved compared to the DNS results, and little di�erence is observed when
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Figure 21. Resolved normal heat �ux pro�le in the turbulent channel �ow.
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Figure 22. Normal heat �ux budget for the Q3 scheme.

comparing results using the di�erent convection schemes, except for the U1 scheme which
shows damped results: an 8% under-prediction is obtained for the streamwise heat �ux using
the Q3 scheme.
Budget for the wall normal heat �ux was calculated (and shown in Figure 22) to recover

the budget equation which reads, in the case of isothermal walls con�guration, as follows:

−v′T ′ + (�+ �t)
@ �T
@y
= u�T� (7)

where the ( ) is here a time average operator.
The di�erent terms of Equation (7) are, from left to right, the resolved turbulent heat �ux,

heat conduction, modelled SGS turbulent heat �ux in the left hand side, and the total normal
heat �ux in the right hand side.
Figure 22 shows the budget in the case of the Q3 convection scheme, while results ob-

tained for the C4 scheme are similar. The obtained pro�les have the classic behaviour, where
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the contribution of the sub-grid-scale model is relatively small since it is a quite well re-
solved LES.

4.3.2. E�ect of implicit time integration. An attempt to derive the e�ect of an implicit time
integration on the behaviour of the temperature �eld was done on the heated channel �ow as
well. The objective is to measure the ability of implicit schemes to limit spurious temperature
values in case of use of centred scheme for convection.
Two major characteristics can be expected from the use of an implicit approach, which are:

either large time steps are desired to accelerate convergence or time advancement; or extreme
values wish to be smoothed in case of rapid dynamics.
The �rst point is not of interest in this framework since it is known that in wall-resolved

LES use of too large CFL may lead to an underestimation of the turbulence intensities since
it does an implicit �ltering operation on the wall-region dynamics.
However, the second point is of interest since we want to measure an eventual smoothing

behaviour on the temperature dynamics, even-though it is known that in the test case of
a convected top hat signal, oscillations are created near the discontinuities which are not
suppressed even in the implicit case in conjunction with a CFL number equal to 1.
The used time integration in this section is a classical implicit Cranck–Nicolson scheme,

corresponding to the test Case C4− Imp (see Table III).
The implementation of the Cranck–Nicolson scheme reads as follows: starting from solution

Un at time step (n), an intermediate solution Un+1=2 is estimated by means of an implicit
method where all terms are implicit

Un+1=2 =Un +Resn+1=2
�t
2

(8)

to calculate the value of the residual Res at the intermediate time step (n + 1
2) that will be

used in the explicit time step from (n) to (n+ 1):

Un+1 −Un

�t
=Resn+1=2 (9)

In the implicit part for the estimation of the residual at (n+1=2), all terms all implicited and
iterative procedure is applied until a certain threshold is reached.
The selected time stepping corresponds to a Courant–Friedrich–Lewy number around 0:8,

as for the explicit simulation.
Results for the mean and �uctuating temperature pro�le are given in Figures 23 and 24,

respectively.
We found slightly better results using the Cranck–Nicolson scheme in addition with the

C4 scheme. Nevertheless, no signi�cant improvement is achieved with this method: mean
pro�le is in better agreement with given DNS data, still �uctuations are only reduced by 3%
and represent an over-prediction of 26% referring to the DNS results. This over-prediction is
compatible with the results of Montreuil et al. [10] who used a semi-implicit time integration
and reached the same levels of discrepancy.
The control of maximum and minimum temperature in the channel (not presented) gave the

same trend for the C4 convection scheme. In fact, no real improvement is obtained concerning
the regulation of temperature extrema when time integration is implicit.
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Figure 23. Distribution of mean resolved temperature in wall co-ordinates.
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Figure 24. Distribution of resolved temperature �uctuations in wall co-ordinates.

4.3.3. E�ect of the SGS model. Using a di�usive scheme may lead to recommend a total
suppression of SGS modelling as reported in some MILES approaches [1, 2].
The present section is to measure the role played by the SGS model. In this section, results

obtained with the C4, Q3 with and without SGS model on the temperature equation are
reported (see Table III).
We see in Figures 25 and 26 that the sub-grid scale model has a very slight positive e�ect

on the results even in conjunction with a regularizing scheme such as the Q3 scheme. Mean
temperature pro�les show little dependence on the use of a SGS model. Fluctuations in the
case of the Q3 scheme without model are slightly under-estimated, especially in the vicinity
of the wall. Fluctuations given by the C4 scheme without model are subject to the inverse
behaviour as the Q3 scheme since �uctuations are higher in the C4−noMod case than in the
C4 case.
For the present resolution, the use of a sub-grid scale model does not signi�cantly improve

the results.
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Figure 25. Distribution of resolved temperature �uctuations in wall co-ordinates.
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Figure 26. Distribution of resolved temperature �uctuations in wall co-ordinates.

5. INTERPRETATIONS

The purposes of this section are dual:

(i) To propose an explanation concerning the observed e�ects and the sensitivity of the
results regarding the convection scheme;

(ii) To analyse the use of the Q3 scheme for the temperature �eld and propose future works.

If one considers the numerical resolution of the incompressible Navier–Stokes equation, we
are confronted to two constraints. The �rst one is by the zero divergence constraint coming
along with the Poisson equation applying on the pressure, which can limit possible too large
velocity �uctuations by reorganizing the energy through all three velocity components.
The second one concerns the SGS model itself: the expression of majority of the sub-grid-

scale models shows a direct relation between the velocity �eld and the value of the eddy
viscosity, thus resulting in a strong coupling between the resolved �eld and the turbulent
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viscosity. Given that, if a region shows large velocity gradients, eddy-viscosity will participate
to the natural damping of velocity and stabilize the �ow.
For these reasons, centred schemes are well suited for momentum. Moreover it is known

that the use of centred schemes provide better results concerning the friction coe�cients (an
attempt of using the Q3 scheme for the convection term in the momentum equation showed a
poor behaviour: the friction coe�cient drops down to much smaller values than with a centred
scheme).
On the contrary, the SGS heat �ux model we use is only related to the velocity �eld and

not only to the temperature gradients, leading to a decoupling between temperature �eld and
turbulent heat di�usion. If one considers the case where the velocity �eld is smooth enough
but the temperature �eld is perturbed, no turbulent di�usion will damp these temperature
�uctuations since it will be directly related to the eddy viscosity.
Therefore, no stabilizing e�ect is achieved neither by the SGS modelling e�ect, nor by the

use of a conservative scheme. Whereas the use of a high order regularizing type scheme helps
controlling the production of spurious oscillations.
The use of Q3 scheme for temperature and centred scheme for momentum may therefore

appear as a good compromise.
Two drawbacks have been identi�ed: (i) the temperature �eld is homogenized faster by

using the Q3 than C4 scheme; (ii) and �uctuations of temperature �eld may appear as a little
damped when compared to equivalent DNS (see Figure 19).
The �rst point is of little importance regarding industrial applications.
The second point and the examination of Figure 19 leads to the conclusion that centred

schemes help recovering the peak intensity of �uctuations in the near wall region whereas
only regularizing scheme may provide a ‘good’ shape of temperature �uctuation for the fully
turbulent region. This statement gives ride to two comments:

(i) First it comes along with a common practice of external aerodynamic people which may
prefer centred schemes and suppress numerical damping in the near wall region [34];

(ii) Second, it suggests a shape of optimized scheme for the present con�guration as follows:

B:(UT )= (f)B:(UT )Q3 + (1− f)B:(UT )C4 (10)

f being a function between 0 and 1. The underlying philosophy being that f � 0 is limited
to areas where molecular di�usion dominates, whereas f � 1 in other places.
Such a numerical scheme has not been tested in the present study but may be part of

forthcoming work.
However, present results obtained with the Q3 scheme for the temperature �eld suggest to

recommend its use for LES involving temperature transport, even in the case of wall bounded
�ows.

6. CONCLUSIONS

Large eddy simulations of temperature transport have been done for several con�gurations
including a two dimensional Tee junction, the isotropic turbulence decay of a passive scalar
and the periodic channel �ow with heat transfer to study the e�ects of the convection schemes
in the discretized temperature equation.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1017–1044



CONVECTION SCHEMES FOR TEMPERATURE TRANSPORT 1041

Attention was payed to the capability of di�erent classical convection schemes (Centred
fourth order, Upwind �rst order and Quick third order) to respect some physical criteria,
such as temperature variance conservation and respect of the physical bounds imposed by the
physical problem.
Centred type schemes showed their limits in all con�gurations calculated here: temperature

physical bounds are not respected due to spurious numerical instabilities leading in part to an
over-estimation of temperature �uctuations in the channel �ow con�guration for example. But
still, centred schemes reproduce correctly energy decay and do not damp the small temperature
scales as seen in the isotropic turbulence.
Upwind type schemes gave physical results between imposed physical bounds in all in-

vestigated cases, but exhibited damping e�ects. These e�ects lead to discard the �rst order
Upwind scheme for which temperature �uctuations are highly under-predicted in all situations.
The Quick scheme revealed to be a good compromise between numerical stability, variance

conservation and damping e�ect on temperature �uctuations.
In the present channel �ow con�guration the role of the sub-grid scale model was not

clearly shown since space discretization was accurate: in the well resolved LES framework it
seems that the only use of an adequate convection scheme (such as a third order quick scheme
with limiter) enables to recover proper turbulence dynamics, and therefore �uctuations, for
the scalar transport.

APPENDIX A: DESCRIPTION OF THE GRID ARRANGEMENT AND THE
CONVECTION SCHEMES

We brie�y introduce the numerical convection schemes used in this work.
The computational grid is a staggered grid where velocities are located at the face centre

and temperature is discretized at the centre of the elements, as shown in Figure A1.
The integration on the control volume around temperature points derives the following

equations, using the Ostrogradsky theorem:∫ ∫ ∫
	

@
@xi
(TUi) d	=

∮
@	
TUi:ni dS

=
∑2Ndim

e=1
TeUeSe (A1)

Figure A1. Grid arrangement (and conventions) on the staggered grid.
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where Te is the interpolated value of the scalar at the face to calculate the �ux, Se is the face
surface and Ue is the transport velocity at the face e.
Convection schemes try to give an approximation of the interpolated value Te.

A.1. First order upwind scheme (U1)

Using the upstream point value to approximate the temperature at point e is equivalent to
using a backward (or forward, depending on the �ow direction) di�erence approximation for
the �rst derivative.
Thus, this simple upwind di�erencing scheme method is the following:

Te=


TP if (Ue:ne)¿0

TE if (Ue:ne)¡0
(A2)

This scheme is of �rst order and is numerically di�usive: its truncation error resembles a
di�usive �ux in @T=@x. However, it is unconditionally stable but induces large di�usive e�ects
(see Reference [35]).

A.2. Third order quick scheme (Q3)

The QUICK scheme (for quadratic upwind interpolation for convective kinetics) (see Refer-
ence [36]) is still an upwind scheme as the previous one. It is much more complex but has a
substantial higher order since it consists of a quadratic interpolation on three points: 2 upwind
points and 1 downwind point.
The interpolation combines a linear interpolation of the two nearest points of the �ux face,

and a curvature term de�ned with upstream and downstream points.
The interpolated temperature at e is then de�ned as

Te=
1
2
(TP + TE)− 1

8
�x2i CURV (A3)

if (Ue:ne)¿0 : CURV =
1

�xi−1

[
TE − TP
�xi

− TP − TW
�xi−1

]
if (Ue:ne)¡0 : CURV =

1
�xi

[
TEE − TE
�xi+1

− TE − TP
�xi

] (A4)

This algorithm can show numerical oscillations, a limiter is then used to eliminate them.
In the case of scalar transport, the FRAM limiter is usually used (see Reference [37]).

A.3. Fourth order centered scheme (C4)

The fourth order Centred scheme for non-uniform grids reaches a somewhat high complexity
and reads as

Te= g1TW + g2TP + g3TE + g4TEE (A5)
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where the four coe�cients are de�ned by

g1 =
−�x2i ((�xi=2) +�xi+1)

4(�xi−1 + �xi +�xi+1)(�xi +�xi−1)�xi−1

g2 =
(�xi + 2�xi+1)(�xi + 2�xi−1)

8(�xi +�xi+1)�xi−1

g3 =
(�xi + 2�xi+1)(�xi + 2�xi−1)

8(�xi +�xi−1)�xi+1

g4 =
−�x2i ((�xi=2) +�xi−1)

4(�xi−1 + �xi +�xi+1)(�xi +�xi+1)�xi+1

(A6)
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1044 A. CHÂTELAIN, F. DUCROS AND O. M�ETAIS

17. Wang W-P, Pletcher RH. On the large eddy simulation of a turbulent channel �ow with signi�cant heat transfer.
Physics of Fluids 1996; 8(12):3354–3366.

18. Lee JS, Pletcher H. LES of a turbulent channel �ow with buoyancy e�ects. AIAA Journal 2001; 2001(0431).
19. Peng S-H, Davidson L. On a sub-grid-scale heat �ux model for large eddy simulation of turbulent thermal �ow.

International Journal of Heat Mass Transfer 2002; 45:1393–1405.
20. Leonard A. Energy cascade in large-eddy simulations of turbulent �uid �ows. Advances in Geophysics 1974;

18A:237–248.
21. Lesieur M, M�etais O. New trends in large-eddy simulations of turbulence. Annual Reviews of Fluid Mechanics

1996; 28:45–85.
22. Sagaut P. Large-Eddy Simulation for Incompressible Flows. Springer Verlag: Berlin, 2002.
23. Lesieur M. Turbulence in Fluids. Kluwer Academic Publishers: Dordrecht, 1997.
24. Nicoud F, Ducros F. Sub-grid-scale stress modelling based on the square of the velocity gradient tensor. Flow,

Turbulence and Combustion 1999; 62:183–200.
25. Calvin C, Cueto O, Emonot P. An object-oriented approach to the design of �uid mechanics software.

Mathematical Modeling and Numerical Analysis 2002; M2AN 2002, special issue.
26. Williamson JH. Low storage Runge–Kutta schemes. Journal of Computational Physics 1980; 35:48–56.
27. M�etais O, Lesieur M. Spectral large-eddy simulation of isotropic and stably strati�ed turbulence. Journal of

Fluid Mechanics 1992; 239:157–194.
28. Dean RB. Reynolds number dependence of skin friction and other bulk �ow variables in two-dimensional

rectangular duct �ow. Journal of Fluids Engineering—Transaction of the ASME 1978; 100:215–223.
29. Rollet-Miet P. Simulation des Grandes Echelles sur maillages non-structur�es pour g�eom�etries complexes. Ph.D.

Thesis, Ecole Centrale de Lyon, 1997.
30. Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel �ow at low Reynolds number. Journal

of Fluid Mechanics 1987; 177:133–166.
31. Kasagi N, Iida O. Progress in direct numerical simulation of turbulent heat transfer. In Proceedings of the 5th

ASME=JSME Joint Thermal Engineering Conference, 1999.
32. Debusschere B, Rutland CJ. Turbulent scalar transport mechanisms in plane channel and couette �ows. Private

communication, International Journal of Heat and Mass Transfer, August 2002, submitted.
33. Kays WM, Crawford ME. Convective Heat and Mass Transfer. McGraw-Hill: New-York, 1980.
34. Swanson R-C, Turkel E. On central-di�erence and upwind schemes. Journal of Computational Physics 1992;

101:292.
35. Ferziger JH, Peric M. Computational Methods for Fluid Dynamics. Berlin: Springer, 1997.
36. Leonard BP. Simple high-accuracy resolution program for convective modelling of discontinuities. International

Journal for Numerical Methods in Fluids 1988; 8:1291–1318.
37. Chapman M. FRAM—Nonlinear damping algorithms for the continuity equation. Journal of Computational

Physics 1981; 44:84–103.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1017–1044


